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Abstract. A class of dynamical systems of the 2-torusT2 is considered. These systems
have the form of a skew product between the Bernoulli endomorphismBp(x) = pxmod 1,
p ∈ Z \ {−1, 0, 1}, defined on the 1-torusT ≡ [0, 1) and a translation onT itself. Symbolic
dynamics techniques allow one to single out wide classes of observables which show an
exponential decay of correlations. For some observables the rate of correlation decay can
be explicitly estimated.

0. Introduction and statement of the results

We study here mappingsMφ of the 2-torusT2 defined by

Mφ(x, y) ≡ (px, y + φ(x))mod 1 (0.1)

where p ∈ Z \ {−1, 0, 1} and φ is a suitable real-valued function of the 1-torusT =
(R/Z,+). T is endowed with the distanced1(x1, x2) ≡ min{|x1 − x2|, 1 − |x1 − x2|},
x1, x2 ∈ T, and parametrized by the interval [0, 1). We denote byB1 the Borelσ -algebra
of (T, d1) and by µ1 the normalized Haar measure on(T,B1). Analogously, we set
T2 ≡ T × T = (R/Z,R/Z,+), with the metricd2((ξ1, ξ2), (η1, η2)) ≡ maxi=1,2 d1(ξi, ηi),
(ξ1, ξ2), (η1, η2) ∈ T2, and introduce on the Borelσ -algebra B2 of (T2, d2) the
corresponding normalized Haar measure. The unit square [0, 1)2 will provide the usual
parametrization. Whenever the real functionφ is µ1-measurable, (0.1) can be interpreted
as the skew product of the circle maps

Bp(x) ≡ pxmod 1 x ∈ T (0.2)

and

Tx(y) ≡ y + φ(x)mod 1 y ∈ T (0.3)

with respect to the invariant product measureµ2 = µ1 × µ1 on B2 = B1 × B1. The
triple (T, µ1, Bp) constitutes the so-called dynamical system acting on the base of the skew
product and is a well known Bernoulli endomorphism, whereas(T, µ1, Tx) provides a family
of toral translations measurably dependent onx and acting on the fibres. Both base and
fibres trivially coincide withT for this class of mappings.
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With the particular choicep = 2 andφ(x) = ω + εx, ε, ω ∈ R, maps like (0.1) were
originally considered in relation to models of modulated diffusion for Hamiltonian systems
subjected to deterministic noise [1, 2]. More precisely, such models took the form

α′ = 2αmod 1− 1
2

θ ′ = θ + ω + εαmod [0, 2π)

j ′ = j + V (θ) (0.4)

j ∈ R and θ ∈ [0, 2π) having a physical interpretation as action and angle variables,
respectively.V (θ) was any 2π -periodic analytic function of the angleθ , with zero mean,
whereasω ∈ R was a constant unperturbed frequency andε ∈ R a perturbation—but
actually not necessarily small—coupling parameter. The ‘noise variable’α varied on the
1-torusT, whose definition was the same as above, but with the parametrization [− 1

2,
1
2)

instead of [0, 1), chosen to obtain a zero-mean perturbation of the frequency. Under the
hypothesis of a Diophantineω/2π , (0.4) exhibits interesting properties, common to more
sophisticated transport models, like existence and finiteness of a suitably defined diffusion
coefficient [1], involving averages on variablesα, θ , analytically provable validity of the
so-called random phase approximation [2] or numerical evidence for both the central limit
property and the invariance principle [3]. Moreover, the time evolution of the actionj

appears totally ‘slaved’ to that of(α, θ), whose dynamics is determined by the first two
equations in (0.4). These features suggest that the driving dynamical system on the(α, θ)

space has rather strong ergodic and statistical properties, but since such a system is trivially
conjugated to maps of the kind (0.1), withp = 2 andφ(x) = ω+ εx, a ‘good’ ergodic and
statistical behaviour of (0.1) itself is expected for this choice ofp andφ.

In fact, a complete characterization of ergodicity, weak and strong mixing was given
in [4] for any value of the parametersε andω, whereas the exactness of the skew product
for irrational ε was proved in [5] by Parry, who also applied Perron–Frobenius techniques
to show that the correlation decay of characters is exponential. More recently, spectral
methods have been successfully used to deal with the case of arbitraryp ∈ Z \ {−1, 0, 1}
and to estimate the rate of correlation decay for analytic and sufficiently smooth (depending
on the choice ofp, ε, ω) observables [6]. A very interesting result established in [7]
states that the mapsMε(x, y) = (2x, y + εx)mod 1 of the 2-torus andB2 on the circle are
isomorphic, whenever the irrational parameterε is extremely well approximated by rationals
(in a suitable sense). Finally, a discussion about the existence and computation of Liapunov
exponents and Kolmogorov–Simai-entropy of (0.1), under quite general assumptions about
φ, can be found in [8]. It is clear that, according to the choice ofφ, the map may present
very different kinds of ergodic behaviour, from Bernoullicity to ergodicity, weak and strong
mixing, exactness or even lack of ergodicity. On the one hand, the occurrence of ergodicity
can be fully characterized by using Anzai’s criterion [9, 10] and many examples of non-
ergodic endomorphismsMφ easily provided. On the other hand, it is known that when
φ(x) = ω + εx exactness ofMφ occurs if and only ifε ∈ R \ Q [5], whereasε ∈ Q
implies the map to be ergodic or non-ergodic according to the irrationality or rationality of
ω, respectively [4].

In this work we tackle two different kinds of problems. First of all we generalize the
result given in [5] and show the exponential decay of correlations for characters under
quite weak assumptions onφ in (0.1)—with respect to the (natural) invariant measureµ2.
By character we mean [11] any (continuous) homomorphism of an Abelian group into
the multiplicative group of the complex numbers of modulus 1: throughout the paper the
Abelian group we will consider is the additive 2-torusT2 = (R2/Z2,+).

The proof of the following proposition is deferred to section 1.
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Proposition 1. Let φ be Lipschitz continuous inT and let the toral endomorphismMφ

defined by (0.1) be weak mixing with respect to the invariant measureµ2. Then the
correlations of characters decay exponentially.

This statement entails, in particular, the equivalence of weak and strong mixing. Indeed,
endomorphisms like (0.1) have a natural inverse limit as invertible systems which are skew
extensions of atwo-sided Bernoulli shift. Weak and strong mixing of an endomorphism and
its inverse limit are the same. In this case no difference between weak and strong mixing
occurs, as both are equivalent to the invertible extension being Bernoulli [12].

From a physical point of view, the most significant by-product of the previous result is
that, for this kind of maps, (weak and strong) mixing occurs if and only if the correlations of
any two elements of the Fourier basis onT2 decay exponentially. In particular, even if only
a unique pair of Fourier vectors exists whose correlations do not decay at an exponential
rate, the map can be at most ergodic.

The second problem we address concerns more specifically the caseφ(x) = ω + εx
and, in particular, the rate of correlation decay when the mixing conditionε ∈ R \ Q is
satisfied. In [5] the exponential decay of correlations for characters is proved, but with no
explicit estimate of the decay rate. Such an exponential rate is exactly reckoned in [6] for
the correlations of any character; there, this result allows one to use spectral techniques
and provides upper bounds to the correlations of smooth and analytic observables. The
correlation decay turns out to be faster than any powern−γ , γ > 0, in the analytic case,
whereas smooth observables satisfy a power-law decay. Nonetheless, these weaker than
exponential bounds may be far from being optimal, especially if we consider that particular
examples ofdiscontinuousobservables obeying an exponential decay law can be found
even in the purely ergodic case (ε ∈ Q, ω ∈ R \ Q). Furthermore, a somewhat unnatural
Diophantine condition onε is needed in the proofs and the ‘good’ symbolic dynamics of
the Bernoulli systemBp acting on the base seems to play no evident role.

Proposition 2 singles out a wide class of observables whose correlations decay
exponentially, with no supplementary requirement onε other than irrationality. As will
become clear in section 2, the application of the symbolic dynamics defined forBp is
crucial to achieve the result, together with a rather cumbersome estimate established in
[13] for different purposes. Finally, a simple comment on the proof leads to the explicit
construction of a family of discontinuous observables also showing an exponential decay
of correlations.

Proposition 2. Let M be any mixing endomorphism ofT2 defined by

M(x, y) ≡ (px, y + ω + εx)mod 1 (0.5)

with p ∈ Z \ {−1, 0, 1}, ε ∈ R \ Q andω ∈ R. Consider a zero-mean observable of the
form

f (z) = g(x) ei2πby ∀z ≡ (x, y) ∈ T2 (0.6)

whereb ∈ Z \ 0 andg : T→ R is a Hölder continuous function with exponentα ∈ (0, 1].
Then the autocorrelations off decay at least exponentially∣∣∣∣ ∫

T2
f (Mn(z))f (z) dµ2(z)

∣∣∣∣ 6 Kθn ∀n ∈ Z+
with a suitable constantK > 0 and rate

θ =
{
α ln |p| ln |J (p, εb)|
α ln |p| − ln |J (p, εb)|

}
< 1 (0.7)
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on having introduced the notation

J (p, εb) ≡ sin

(
p
πεb

p − 1

)[
p sin

(
πεb

p − 1

)]−1

.

The conditionb 6= 0 is only imposed to avoid trivial cases; the occurrence of exponential
correlation decay for Ḧolder continuous observables dependent on the only variablex is
simply ensured by the Bernoullicity ofBp. A slight modification of the proof allows us
to obtain an analogous result for the purely ergodic caseε ∈ Q, provided that a suitable
‘non-resonance’ condition is posed onb (see later).

An immediate corollary of proposition 2 is that any observable consisting of a finite
linear combination of functions like (0.6) also decays exponentially, and at a computable
rate. Of course, countable linear combinations of (0.6) can be analysed by spectral methods,
leading to estimates similar to those established in [6].

1. Proof of proposition 1

The proof is largely based on the arguments developed in [5]. Letφ be Lipschitz continuous
in T and consider any non-constant character ofT2, that is

ea,b(x, y) ≡ ei2π(ax+by) (a, b) ∈ Z2 \ {(0, 0)}, (x, y) ∈ T2. (1.1)

We preliminary observe that∀n > 1 the definition (0.1) implies

Mn
φ(x0, y0) ≡ (xn, yn) =

(
pnx0, y0+

n−1∑
j=0

φ(xj )

)
mod 1 (1.2)

so that the autocorrelations ofea,b

Cn(a, b) ≡
∫
T2
ea,b(x, y)ea,b ◦Mn

φ(x, y)dµ2(x, y) n ∈ N (1.3)

become

Cn(a, b) =
∫
T

exp

{
i2π

[
a(pn − 1)x0+ b

n−1∑
j=0

φ(xj )

]}
dµ1(x0) (1.4)

and sincea(pn − 1)x0 mod 1= a(p − 1)
∑n−1
j=0 xj mod 1, take the equivalent form

Cn(a, b) =
∫
T

exp

{
i2π

n−1∑
j=0

[a(p − 1)xj + bφ(xj )]
}

dµ1(x0)

=
∫
T

exp

{
i2π

n−1∑
j=0

λ(xj )

}
dµ1(x0) (1.5)

with λ(x) ≡ a(p − 1)x + bφ(x). From now on we will consider, for simplicity’s sake, the
case of positivep, but it is understood that the final results are still valid whenp 6 −2,
even if the calculations are slightly different. Following [5] we introduce the symbolic
dynamics of the Bernoulli mapBp. In the space6+p ≡

∏∞
i=0{0, 1, . . . , p − 1} of the one-

sided sequences of symbols 0, 1, 2, . . . , p − 1, let Mp be theσ -algebra generated by the
‘cylindrical’ sets

C(αj+1, αj+2, . . . , αj+l) ≡ {ω ≡ (ωi)∞i=0 ∈ 6+p : ωk = αk ∀k = j + 1, . . . j + l}. (1.6)

A probability measuremp is uniquely determined onMp by posing, for each cylinder,
mp(C(αj+1, αj+2, . . . , αj+l)) ≡ p−l , and the shift mapσ(ω) = ω′, ω′i = ωi+1 ∀i > 0,
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on the probability space(6+p ,Mp,mp) admitsmp as an invariant measure. The resulting
Bernoulli shift can be easily conjugated(mod 0) with (Bp,T,B1, µ1) by means of the
mappingχ(ω) ≡∑∞i=0ωip

−(i+1), and ifDp stands for the set ofp-adic numbers in the unit
interval [0, 1), with measureµ1(Dp) = 0, χ is also one-to-one inT\Dp. It finally maps the
Bernoulli measuremp on6+p to the Haar–Lebesgue measureµ1, so that the autocorrelations
(1.5) can be rewritten in the form

Cn(a, b) =
∫
6+p

exp

{
i2π

n−1∑
j=0

λ[Bjp(χ(ω))]

}
dmp(ω) =

∫
6+p
(Pn1)(ω) dmp(ω) (1.7)

where 1 :6+p → R is the constant function of value 1 andP the complex Ruelle–Perron–
Frobenius (RPF) operator

(Ph)(ω) ≡
∑

ω̄:σ(ω̄)=ω
exp{− logp + i2πλ[χ(ω̄)]}h(ω̄)

h : 6+p → C, h ∈ L2(6+p ,Mp,mp). (1.8)

Note that:
(i) with respect to the distanced1/p : 6+p × 6+p → R+ defined byd1/p(ω, ω̄) ≡ p−N ,

N being the largest integer such thatωi = ω̄i , 0 6 i < N , the conjugationχ is Lipschitz
continuous,|χ(ω)− χ(ω̄)| 6 d1/p(ω, ω̄), ∀ω, ω̄ ∈ 6+p , and so isλ ◦ χ

|λ ◦ χ(ω)− λ ◦ χ(ω̄)| 6 (|a(p − 1)| + |b|κ)d1/p(ω, ω̄) (1.9)

whereκ is the Lipschitz constant ofφ;
(ii) the shift (6+p , σ ) is aperiodic [14];
(iii) the associated real RPF operator

(Prh)(ω) =
∑

ω̄:σ(ω̄)=ω
e− logph(ω̄) ∀h : 6+p → C, h ∈ L2(6+p ,Mp,mp) (1.10)

satisfies the normalization propertyPr1 = 1. Therefore,mp is the only equilibrium
probability measure forPr , according to RPF theorem [15, 16].

The above items ensure (see [16], pp 49–53, and proposition 4.4 in particular) that
the RPF operator (1.8), considered on the (suitably normed) spaceC(6+p ) of continuous
functions in(6+p , d1/p), has a spectral radius strictly less than 1 if the isometric operator

(V h)(ω) ≡ e−i2πλ[χ(ω)]h(σ(ω)) h : 6+p → C, h ∈ L2(6+p ,Mp,mp) (1.11)

admits no eigenfunction (with eigenvalue necessarily of the form eiα, a phase factor). The
latter condition, reprojected toL2(T,B1, µ1) via χ , is obviously equivalent to exclude
the existence of a constantα ∈ R and aµ1-almost everywhere non-vanishing function
R : T→ C, R ∈ L2(T,B1, µ1), such that

R(Bp(x)) = ei2π [a(p−1)x+bφ(x)]R(x) eiα (1.12)

for µ1-almost allx ∈ T. Such a condition cannot occur and we prove this byreductio ad
absurdum. Thus, suppose (1.12) is verified for someα andR as above. This would imply

R(Bp(x)) e−i2πapx = ei2πbφ(x)R(x) e−i2πax eiα

and, therefore, by posingS(x) ≡ e−i2πaxR(x), we would haveS(Bp(x)) = ei2πbφ(x)S(x) eiα.
TheL2(T2,B2, µ2) functionψ(x, y) ≡ S(x) e−i2πby , (x, y) ∈ T2, would then satisfy

(ψ ◦Mφ)(x, y) = S(Bp(x)) e−i2πb(y+φ(x)) = eiα S(x) e−i2πby = eiαψ(x, y)
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and finally(ψ ◦Mφ) = eiαψ µ2-almost everywhere onT2. Notice that wheneverb 6= 0 the
functionψ is a zero-mean observable∫
T2
ψ dµ2 =

∫
T2
S(x) e−i2πby dµ2(x, y) =

∫
T
S(x) dµ1(x)

∫
T

e−i2πby dµ1(y) = 0.

For everyn ∈ N the autocorrelations ofψ are then written as

Cn(ψ) =
∫
T2
ψ ◦Mn

φψ dµ2 = e−inα
∫
T2
|ψ |2 dµ2

but if Mφ satisfies a weak mixing property the observableψ must obey [17]

lim
n→+∞

1

n

n−1∑
j=0

|Cn(ψ)| = 0

whereas

lim
n→+∞

1

n

n−1∑
j=0

|Cn(ψ)| =
∫
T2
|ψ |2 dµ2

which is positive unlessψ = 0 µ2-almost everywhere onT2. Sinceψ(x, y) = S(x) e−i2πby ,
with S ∈ L2(T,B1, µ1), the last statement would implyS = 0 µ1-almost everywhere on
T, a contradiction.

From the obvious observation 1∈ C(6+p ) we conclude that∀(a, b) ∈ Z2, b 6= 0, there
holds

|Cn(a, b)| =
∣∣∣∣ ∫

6+p
(Pn1)(ω) dmp(ω)

∣∣∣∣ 6 Krn ∀n ∈ N (1.13)

for some constantsK > 0 andr ∈ (0, 1)—dependent on(a, b).
As for the caseb = 0, the exponential decay of autocorrelations for characters trivially

follows by noting that the only relevant dynamics is that of the Bernoulli mapBp on
the circle—ea,0 reduces to a Lipschitz continuous observable onT. We conclude that
correlations decay exponentially for all theL2(T2,B2, µ2)-complete orthonormal set of
characters. �

2. Proof of proposition 2

The idea of the proof is very simple. For this kind of map no general argument ensures the
existence of a ‘dynamical partition’ ofT2, which would make it possible to use symbolic
dynamics techniques directly on the whole space; this means that no obvious partition of the
2-torus exists whose indicators can approximateany observable ofT2 and have correlations
decaying at a known, uniform rate. In particular, (0.5) is clearly non-hyperbolic and we do
not expect that a Markov partition can be introduced. Nonetheless, such a Markov partition
is trivially defined for the Bernoulli endomorphismBp on the 1-torus, and any function
g(x) in (0.6) can be conveniently approximated by indicators of cylindrical sets ofBp. The
problem is then reduced to providing uniform estimates to the rates of correlation decay for
observables of the form (0.6),g being the indicator of any cylinder ofBp. This is exactly
what it is possible to do, in this case, by using estimates already available in the literature.

In what follows we will denote byCn(f ) the autocorrelations at timen ∈ N of the
observablef . For simplicity’s sake, but with no loss of generality, we confine ourselves to
the case of positivep, the proof forp 6 −2 being completely analogous.
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Suppose thatg is Hölder continuous with exponentα ∈ (0, 1] and constantL > 0, so
that

|g(x1)− g(x2)| 6 Ld1(x1, x2)
α ∀x1, x2 ∈ T. (2.1)

The first step of the proof is a standard application of symbolic dynamics to the estimate
of correlation decay. We replace the observable by an approximated observable piecewise
constant on the elements of a suitable partition of phase space having good mixing properties
through the dynamics. In this case such a partition on the whole probability spaceT2 is not
trivially available, but the particular structure off allows us to apply a piecewise constant
approximation on the factorg(x) only, by using cylinders ofBp in the baseT. Remembering
that for any givenm ∈ N a set of Markov cylinders ofBp consists of thep-adic intervals
(hp−m, (h+ 1)p−m), h = 0, 1, . . . , pm − 1, let us introduce the approximated observable

fm(z) ≡ ei2πby
pm−1∑
h=0

g(ξh)X[h/pm,(h+1)/pm)(x) (2.2)

whereX� denotes the characteristic function of any set� ⊆ T andξh ∈ (hp−m, (h+1)p−m).
We use (2.2) to approximate the autocorrelationCn(f ), n ∈ Z+. To this end, we consider
the equality

Cn(f ) =
∫
T2
f (Mn(z))f (z) dµ2(z) =

∫
T2

[f (Mn(z))− fm(Mn(z))]f (z) dµ2(z)

+
∫
T2
fm(Mn(z))[f (z)− fm(z)] dµ2(z)+

∫
T2
fm(Mn(z))fm(z) dµ2(z) (2.3)

and provide estimates for each integral on the right-hand side. Sincef is continuous on
the compactT2, there exists‖f ‖∞ ≡ supz∈T2 |f (z)| and therefore∣∣∣∣ ∫
T2

[f (Mn(z))− fm(Mn(z))]f (z) dµ2(z)

∣∣∣∣ 6 ‖f ‖∞ ∫
T2
|f (Mn(z))− fm(Mn(z))| dµ2(z).

This upper bound can also be rewritten into the form

‖f ‖∞
∫
T

∣∣∣∣g(pnxmod 1)−
pm−1∑
h=0

g(ξh)X[h/pm,(h+1)/pm)(p
nxmod 1)

∣∣∣∣ dµ1(x)

6 ‖f ‖∞
∫
T

pm−1∑
h=0

|g(pnxmod 1)− g(ξh)|X[h/pm,(h+1)/pm)(p
nxmod 1) dµ1(x)

(2.4)

and since for each term in the sum the only values ofx to be considered are those satisfying
pnxmod 1∈ [h/pm, (h+ 1)/pm), there holds

|g(pnxmod 1)− g(ξh)| 6 L|pnxmod 1− ξh|α 6 Lp−αm ∀h = 0, 1, . . . , pm − 1

so that (2.4) provides the further bound

‖f ‖∞
∫
T

pm−1∑
h=0

Lp−αmX[h/pm,(h+1)/pm)(p
nxmod 1) dµ1(x) = ‖f ‖∞Lp−αm. (2.5)

The second integral on the right-hand side of (2.3) is estimated immediately by observing
that |fm(Mn(z))| 6 ‖fm ◦Mn‖∞ = ‖fm‖∞ 6 ‖f ‖∞:∣∣∣∣ ∫
T2
fm(Mn(z))[f (z)− fm(z)] dµ2(z)

∣∣∣∣ 6 ‖f ‖∞ ∫
T2
|f (z)− fm(z)| dµ2(z) 6 ‖f ‖∞Lp−αm
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where the residual integral is bounded as in (2.5). As for the last integral in (2.3), we have
the identity∫
T2
fm(Mn(z)) fm(z) dµ2(z) =

∫
T2

e−i2πbyn
pm−1∑
h=0

g(ξh)X[h/pm,(h+1)/pm)(xn) ei2πby0

×
pm−1∑
h′=0

g(ξh′)X[h′/pm,(h′+1)/pm)(x0) dµ2(x0, y0) (2.6)

with xn = pnx0 mod 1 andyn = y0+ nω + ε
∑n−1
j=0 xj , so that

ei2πb(y0−yn) = exp

{
i2πb

(
− nω − ε

n−1∑
j=0

xj

)}
and therefore (2.6) can be put into the equivalent form

e−i2πbωn
pm−1∑
h,h′=0

g(ξh)g(ξh′)

∫
T

exp

{
− i2πbε

n−1∑
j=0

xj

}
X[h/pm,(h+1)/pm)(xn)

×X[h′/pm,(h′+1)/pm)(x0) dµ1(x0).

By introducing the notation†

I (p, εb; k) ≡ sin

[
p
πεb

p − 1
(1− p−k)

][
p sin

[
πεb

p − 1
(1− p−k)

]]−1

∀k ∈ N

a simple but rather tedious computation [13] allows us to prove∀n,m ∈ N, n > m, and
∀h, h′ ∈ {0, 1, . . . , pm − 1} the basic equality∫
T

exp

{
− i2πbε

n−1∑
j=0

xj

}
X[h/pm,(h+1)/pm)(xn)X[h′/pm,(h′+1)/pm)(x0) dµ1(x0)

= 1

p2m
sinc

[
πbε

pn − 1

p − 1

1

pm+n

] n∏
k=m+1

I (p, εb; k) exp

{
− i2πb

[
ε

2
(n−m)

+ ε

p − 1

[
1m(h

′)− h′

pm
+
(

1

pm
− 1

pm+n

)
h+ 1

2pn

(
1− 1

pm

)]]}
where sinc(z) ≡ sinz/z ∀z ∈ R \ {0}, sinc(0) = 1 and1m(h) ≡

∑m
k=0 ak, if

∑m
k=0 ak p

m−k

is the Hindu–Arabic representation in the basep of the integerh, with a0 = 0. The result
can easily be found by induction and entails∀n,m ∈ N, n > m, the upper bound∣∣∣∣ ∫
T

exp

{
− i2πbε

n−1∑
j=0

xj

}
X[h/pm,(h+1)/pm)(xn)X[h′/pm,(h′+1)/pm)(x0) dµ1(x0)

∣∣∣∣
6 1

p2m

∣∣∣∣ n∏
k=m+1

I (p, εb; k)
∣∣∣∣

uniform onh, h′ ∈ {0, 1, . . . , pm−1}. Following the main ideas in [13], we use the previous
inequality in (2.6) and get∣∣∣∣ ∫

T2
fm(Mn(z))fm(z) dµ2(z)

∣∣∣∣ 6 ‖f ‖2
∞

∣∣∣∣ n∏
k=m+1

I (p, εb; k)
∣∣∣∣.

† The function sin(px)/px is regarded as defined by continuity atx = 0.
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As a conclusion,∀b ∈ Z\{0}, m, n ∈ N, n > m, the equality
∫
T f (z) dµ2(z) = 0 holds and

|Cn(f )| 6 2L‖f ‖∞p−αm + ‖f ‖2
∞

∣∣∣∣ n∏
k=m+1

I (p, εb; k)
∣∣∣∣. (2.7)

It is now enough to posem ≡ brnc, with r ∈ (0, 1) fixed andbxc the integer part ofx ∈ R,
to deduce the exponential decay of correlations. Note that the limit

lim
n→+∞

n∏
k=1

[I (p, εb; k)J (p, εb)−1]

exists and is finite and different from zero owing to the finite upper bound

n∑
k=1

|I (p, εb; k)J (p, εb)−1− 1| 6 |J (p, εb)|−1 sup
|x|6π

∣∣∣∣ d

dx

sin(px)

p sinx

∣∣∣∣ π |εb|
(p − 1)2

∀n ∈ Z+

and, therefore, two positive constants3+(p, εb) and3−(p, εb) can be found such that

3−(p, εb)|J (p, εb)|n <
∣∣∣∣ n∏
k=1

I (p, εb; k)
∣∣∣∣ < 3+(p, εb)|J (p, εb)|n ∀n ∈ Z+.

We can then write∣∣∣∣ n∏
k=m+1

I (p, εb; k)
∣∣∣∣ 6 3+(p, εb)

3−(p, εb)
|J (p, εb)|n−m.

By replacing this inequality inside the upper bound (2.7) we finally obtain

|Cn(f )| 6 2L‖f ‖∞p−αm + ‖f ‖2
∞
3+(p, εb)
3−(p, εb)

|J (p, εb)|n−m ∀n > m ∈ N (2.8)

and therefore

|Cn(f )| 6 2L‖f ‖∞p−αbrnc + ‖f ‖2
∞
3+(p, εb)
3−(p, εb)

|J (p, εb)|n−brnc (2.9)

for everyn ∈ Z+ andr ∈ (0, 1) fixed. We only have to choose the parameterr in order to
optimize the estimate (2.9). Such a bound is of the type|Cn(f )| 6 Aµbrnc +Bνn−brnc ∀n ∈
Z+, with A,B > 0 andµ, ν, r ∈ (0, 1), and it can firstly be weakened as follows:

|Cn(f )| 6 A e(rn−1) lnµ + B e(n−rn) ln ν = A

µ
enr lnµ + B en(1−r) ln ν .

To achieve optimality, we require that the decay rate of both terms is the same and get

|Cn(f )| 6
(
A

µ
+ B

)
exp

{
lnµ ln ν

lnµ+ ln ν
n

}
. (2.10)

In our case,A ≡ 2L‖f ‖∞, B ≡ ‖f ‖2
∞3+(p, εb)/3−(p, εb), µ ≡ p−α andν ≡ |J (p, εb)|,

so that

|Cn(f )| 6
[

2L‖f ‖∞pα + ‖f ‖2
∞
3+(p, εb)
3−(p, εb

]
exp

{ −α lnp ln |J (p, εb)|
−α lnp + ln |J (p, εb)|n

}
∀n ∈ Z+

and the estimated exponential rate is therefore (0.7), which completes the proof. �
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Remark 1. Analogous estimates also hold in the non-mixing caseε ∈ Q, but a further
condition on the choice of the integerb is needed. More precisely, wheneverεb/(p−1) ∈ Z
no exponential decay of correlations can be proved by using the methods previously exposed.
In fact, it is easily seen that correlation decay may not even occur; this is, for instance, the
case of the character

f (x, y) = exp

{
i2π

(
− εb

p − 1
x + by

)}
which obeys(f ◦ M)(x, y) = f (x, y)ei2πωb. Otherwise,εb/(p − 1) /∈ Z intails an
exponential decay of correlations. The proof of proposition 2 applies unchanged if
pεb/(p − 1) /∈ Z too, the only difference being that (2.10) holds forn large enough.
The scale factor((A/µ) + B) must be obviously increased to cover any value ofn ∈ N,
but the decay rate is exactly the same as in (0.7). The opposite casepεb/(p − 1) ∈ Z
requires a slightly different investigation; the dominant term in the final upper bound to the
correlations turns out to come from the piecewise approximation ofg on Markov cylinders
and the estimated rate is simplyp−α.

Remark 2. If g is a piecewise constant function on Markov cylinders

g(x) =
pm
∗−1∑
h=0

chX[h/pm∗ ,(h+1)/pm∗ )(x) ch ∈ R (or C), m∗ ∈ Z+ (2.11)

relation (2.8) also holds, but without the term 2L‖f ‖∞p−αm which would be derived from
the approximation ofg, which is unnecessary here. We simply have to putm = m∗ and
considern > m∗ to achieve an exponential bound to correlations with rate|J (p, εb)|—
whose extension to anyn ∈ N is immediate. Whenεb/(p − 1) /∈ Z but pεb/(p − 1) ∈ Z,
the disappearance of the approximation term leads to the stronger estimate

|Cn(f )| 6 C e−τn
2 ∀n ∈ N

with appropriate positive constantsC andτ . It is noticeable that non-constant observables of
the formg(x) ei2πby , g given by (2.11), are discontinuous with respect to the metricd2. As
a conclusion, a wide family of discontinuous observables showing an (at least) exponential
decay of correlations has been explicitly constructed.
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